Abstract
Cyclodextrin-based nanosponges are widely investigated for several applications and are considered potential drug carriers. The method of nanosponges preparation involves the use of chemical cross-linking agents where the properties of Nanosponges can be affected. This study compared the resulting differences in the final nanosponges' properties using carbonate and dianhydride crosslinkers. Diphenyl carbonate and EDTA dianhydride were used for the synthesis of nanosponges. Both types of nanosponges were loaded with curcumin as a model drug. Physicochemical characterizations, including PXRD, DSC, FTIR, scanning electron microscopy, AFM, particle size, zeta potential, and surface area analysis, were carried out for the prepared nanosponges. Curcumin release and drug content were also evaluated. Nanosponges prepared by Diphenyl carbonate crosslinker resulted in an amorphous form compared to crystalline EDTA-nanosponges. This study reported the successful inclusion and complexation of curcumin inside carbonate cross-linked cyclodextrin-based nanosponges and suggested the physical entrapment of crystalline curcumin in EDTA dianhydride. These findings were further investigated and supported by computational modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.