Abstract
The integrity of steam generator tubes is usually evaluated based on eddy current test (ECT) results. Because detection capacity of the ECT is not perfect, all of the physical flaws, which actually exist in steam generator tubes, cannot be detected by ECT inspection. Therefore it is very important to analyze ECT reliability in the integrity assessment of steam generators. The reliability of an ECT inspection system is divided into reliability of inspection technique and reliability of quality of analyst. And the reliability of ECT results is also divided into reliability of size and reliability of detection. The reliability of ECT sizing is often characterized as a linear regression model relating true flaw size data to measured flaw size data. The reliability of detection is characterized in terms of probability of detection (POD), which is expressed as a function of flaw size. In this paper the reliability of an ECT inspection system is analyzed quantitatively. POD of the ECT inspection system for axial outside diameter stress corrosion cracks (ODSCC) in steam generator tubes is evaluated. Using a log-logistic regression model, POD is evaluated from hit (detection) and miss (no detection) binary data obtained from destructive and non-destructive inspections of cracked tubes. Crack length and crack depth are considered as variables in multivariate log-logistic regression and their effects on detection capacity are assessed using two-dimensional POD (2-D POD) surface. The reliability of detection is also analyzed using POD for inspection technique (POD T) and POD for analyst (POD A).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pressure Vessels and Piping
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.