Abstract

BackgroundNoninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [11C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [11C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [11C]acetate PET. MethodsThirty-five subjects with aortic valve stenosis underwent ECG-gated [11C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE. ResultsLV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P < .001 for all), but were underestimated by PET (P < .001 for all except ESV P = .79). PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P < .001, bias −3 ± 21%, P = .56). PET-based MEE bias was strongly associated with LV wall thickness. ConclusionsAlthough analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [11C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call