Abstract

BackgroundRapid diagnostic tests detecting microbial resistance are needed for limiting the duration of inappropriateness of empirical antimicrobial therapy (EAT) in intensive care unit patients, besides reducing the use of broad-spectrum antibiotics. We hypothesized that the betaLACTA® test (BLT) could lead to early increase in the adequacy of antimicrobial therapy.MethodsThis was a case-control study. Sixty-one patients with BLT-guided adaptation of EAT were prospectively included, and then matched with 61 “controls” having similar infection characteristics (community or hospital-acquired, and source of infection), in whom EAT was conventionally adapted to antibiogram results. Endpoints were to compare the proportion of appropriate (primary endpoint) and optimal (secondary endpoint) antimicrobial therapies with each of the two strategies, once microbiological sample culture results were available.ResultsCharacteristics of patients, infections and EAT at inclusion were similar between groups. Nine early escalations of EAT occurred in the BLT-guided adaptation group, reaching 98% appropriateness vs. 77% in the conventional adaptation group (p < 0.01). The BLT reduced the time until escalation of an inappropriate EAT from 50.5 (48–73) to 27 (24–28) hours (p < 0.01). Seventeen early de-escalations occurred in the BLT-guided adaptation group, compared to one in the conventional adaptation group, reducing patients’ exposure to broad-spectrum beta-lactam such as carbapenems. In multivariate analysis, use of the BLT was strongly associated with early appropriate (OR = 18 (3.4–333.8), p = 0.006) and optimal (OR = 35.5 (9.6–231.9), p < 0.001) antimicrobial therapies. Safety parameters were similar between groups.ConclusionsOur study suggests that a BLT-guided adaptation strategy may allow early beta-lactam adaptation from the first 24 hours following the beginning of sepsis management.

Highlights

  • Rapid diagnostic tests detecting microbial resistance are needed for limiting the duration of inappropriateness of empirical antimicrobial therapy (EAT) in intensive care unit patients, besides reducing the use of broad-spectrum antibiotics

  • To minimize the individual risk of an inappropriate EAT and at the same time the societal risk of excessive broad-spectrum beta-lactams consumption, early initiation of broad-spectrum EAT is recommended, followed by its de-escalation as soon as the results of antibiotic susceptibility tests (AST) are available [6, 7]. This conventional AST-guided de-escalation occurs 48 to 72 hours after initiation of EAT [8]. This time is too long for the 10–30% of patients treated with inappropriate EAT [3, 9,10,11]; on the other hand, this time is sufficient for the carriage of carbapenem-resistant bacteria to emerge [12]

  • Patient characteristics From January 2014 to December 2015, 622 patients receiving EAT for suspected sepsis were screened for eligibility, among whom 154 patients had ≥1 Enterobacteriaceae strain isolated in culture; 61 of these patients were included as cases and were analysed in the betaLACTA® test (BLT)-guided adaptation group (Fig. 2)

Read more

Summary

Introduction

Rapid diagnostic tests detecting microbial resistance are needed for limiting the duration of inappropriateness of empirical antimicrobial therapy (EAT) in intensive care unit patients, besides reducing the use of broad-spectrum antibiotics. To minimize the individual risk of an inappropriate EAT and at the same time the societal risk of excessive broad-spectrum beta-lactams consumption, early initiation of broad-spectrum EAT is recommended, followed by its de-escalation as soon as the results of antibiotic susceptibility tests (AST) are available [6, 7]. This conventional AST-guided de-escalation occurs 48 to 72 hours after initiation of EAT [8]. Strategies for limiting the duration of EAT inadequacy, at the same time as reducing the use of broad-spectrum beta-lactam antibiotics are urgently needed [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.