Abstract
Fresh produce irrigated with contaminated water poses a substantial risk to human health. This study evaluated the impact of incorporating sediment information on improving the performance of machine learning models to quantify E. coli level in irrigation water. Field samples were collected from irrigation canals in the Southwest U.S., for which meteorological, chemical, and physical water quality variables as well as three additional flow and sediment properties: the concentration of E. coli in sediment, sediment median size, and bed shear stress. Water quality was classified based on E. coli concentration exceeding two standard levels: 1 E. coli and 126 E. coli colony forming units (CFU) per 100 ml of irrigation water. Two series of features, including (FIS) and excluding (FES) sediment features, were selected using multi-variant filter feature selection. The correlation analysis revealed the inclusion of sediment features improves the correlation with the target standards for E. coli compared to the models excluding these features. Support vector machine, logistic regression, and ridge classifier were tested in this study. The support vector machine model performed the best for both targeted standards. Besides, incorporating sediment features improved all models' performance. Therefore, the concentration of E. coli in sediment and bed shear stress are major factors influencing E. coli concentration in irrigation water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.