Abstract

Background Thiols are organic compounds containing sulfhydryl groups which exert antioxidant effects via dynamic thiol-disulfide homeostasis. The shift towards disulfides indicates the presence of oxidative environment. Thiol-disulfide homeostasis has not been evaluated in neonates. We aimed to evaluate dynamic thiol-disulfide homeostasis in preterm infants. Methods Preterm infants with birth weight less than 1500 g (25–32 weeks of gestation) were included. Infants with major congenital anomaly, perinatal asphyxia, twin to twin transfusion and infants who were mechanically ventilated and nil by mouth for more than 3 days or fed with formula, had intraventricular hemorrhage ≥ grade 2 or sepsis, received blood/blood product transfusion or inotrope treatment and developed bronchopulmonary dysplasia or retinopathy of prematurity (≥ stage 3), and died were excluded thereafter. Serum thiol-disulfide homeostasis was evaluated for three times: (Baseline, first week, third week). Serum native thiol, total thiol and disulfide were measured (µmol/Lt), disulfide:native thiol, disulfide:total thiol, and native thiol:total thiol ratios were calculated. Wilcoxon’s test was used to analyze the significance of change in measurements. Baseline results were analyzed for gender and mode of delivery. Results Eighty preterm infants [1255 (1080–1415) grams] were included. Baseline values were native thiol: 209.54 ± 41.83 µmol/L; total thiol: 251.70 ± 45.82 µmol/L; disulfide: 21.08 ± 7.43 µmol/Lt; disulfide:native thiol: 10.49 ± 4.62; disulfide:total thiol: 8.45 ± 2.93; native thiol:total thiol: 83.10 ± 5.87. Thiol levels increased in each measurement, disulfide and disulfide/thiol ratios increased in the first week, decreased in the third week, ratio of native/total thiol decreased in the first week, increased in the third week. No effect of gender or mode of delivery on baseline thiol-disulfide homeostasis was detected. Conclusions The shift in the thiol-disulfide equilibrium towards disulfides in the first week can be attributed to subjection of infants to many oxidative insults. Furthermore, the thiol predominance in the third week could be explained by the decrease in oxidative events and increase in feeding as a supply of antioxidants. This study, displaying the levels of the dynamic thiol-disulfide homeostasis in preterm infants without obvious risks for increased oxidative stress, may provide acceptable range for thiol-disulfide homeostasis in recovering preterm infants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call