Abstract

In this study, application of a class of stochastic dynamic models and a class of artificial intelligence model is reported for the forecasting of real-time hydrological droughts in the Black River basin in the USA. For this purpose, the Standardized Hydrological Drought Index (SHDI) was adopted in different time scales to represent the hydrological drought index. Six probability distribution functions (PDF) were fitted to the discharge time series to obtain the best fit for SHDI calculation. Then, a dynamic linear spatio-temporal model (DLSTM) and artificial neural network (ANN) were used to forecast SHDI. Although results indicated that both models were able to forecast SHDI in different time scales, the DLSTM was far superior in longer lead times. The DLSTM could forecast SHDI up to 6 months ahead while ANN was only capable of forecasting SHDI up to 2 months ahead appropriately. For short lead times (1–6 months), the DLSTM has performed nearly perfect in test phase and CE oscillates between 0.97 and 0.86 while for ANN modeling, CE is between 0.72 and 0.07. However, the performance of DLSTM and ANN reduced considerably in medium lead times (7–12 months). Overall, the DLSTM is a powerful tool for appropriately forecasting SHDI at short time scales; a major advantage required for drought early warning systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.