Abstract

The preservation of trees in urban and archeological areas is a theme of particular relevance. Modern systems of monitoring, together with approaches for deriving the main characteristics of trees influencing their response toward extreme events, are nowadays at the basis of a growing number of studies. The aim of the present paper is the dynamic identification of trees carried out by employing an approach which combines a simple data-acquisition system, direct and ambient sources of excitation, and different data-processing methods. In particular, using a single accelerometer placed at different sections of the trunk and considering excitations induced by either pulling tests or ambient vibrations, the derivation of the main frequencies and levels of modal damping characterizing the dynamic response of a sour cherry tree (Prunus cerasus) is carried out. A finite element model of the tree is also carried out to support the validation of the proposed approach and further analyze the derived outcomes. The obtained results underline the feasibility of the proposed approach in deriving information useful for assessing the behavior of trees toward dynamic actions and, consequently, of particular relevance for the identification of possible damages induced by variations in terms of dynamic characteristics (frequencies) and damping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.