Abstract

Wind energy is a renewable source of energy and as it provides clean and green energy and is vigorously pursued in the last few years in the world as well as in India. A country like India has approximately 102,790 MW wind power generation capacity. Wind structures are tall and characterized by slender structural geometry. The height of wind mill plays an important role in wind power generation. One can extract more energy from wind by increasing height of tower, the major obstacle in height increase is the slenderness of the wind mill towers. To extract more energy various researcher has tried steel-concrete tower and octagonal shape tower to overcome slenderness effect. To avoid the slenderness effect on tall towers a combination of lattice-monopole structural system is proposed and investigated. A finite element model of 125 m tall tower is developed for comparison of conventional and proposed mono-lattice supporting structural systems. Detailed dynamic analysis under working loads of wind turbines and nonlinear seismic loads are carried out. The response of both structural systems is quantified in terms of dynamic amplification, displacement, and base shear. It is observed that mono-lattice structural system is less sensitive to dynamic forces and system proves economical for tall towers compared to conventional systems and can be used for tall towers to extract more power at low and unsteady wind sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call