Abstract

Nowadays researchers are trying to simultaneously enhance the mechanical properties and durability of concrete using additives. In this study, the experimental results of the effect of admixture concrete with different percentages of polycarboxylate ether and E205 additives were investigated separately on fiber reinforced concrete with polypropylene fibers. In this regard, durability tests including electrical resistivity tests, water absorption, rapid choloride permeability test (RCPT) and compressive strength of concrete have been investigated. In addition, to study the microstructure of cement paste containing polypropylene fibers and polycarboxylate ether additives and E205 additives were used, X-ray diffraction spectroscopy (XRD) experiments, scanning electron microscopy (SEM) images and XRF chemical composition test. The results show that adding additives to the concrete admixture, reduced compared to the control sample 51% chlorine ion penetration in concrete with polycarboxylate ether and polypropylene fibers (sample A) and 36% chlorine ion penetration with E205 additive. Water absorption was reduced in samples A 27% and in samples B, 16% compared to the control sample, also the increase in specific electrical resistivity compared to the control sample was 525% in samples A and 619% in samples B. Also, the compressive strength of samples at 7 and 28 days of age increased by 134% and 56%, respectively, and the highest compressive strength in samples B at 7 and 28 days were 43% and 29%, respectively. Control sample increased. According to the results, it can be concluded that the durability and compressive strength of fibers reinforced with polypropylene fibers is increased by adding polycarboxylate ether and E205 additives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call