Abstract
Full-scale fatigue testing is part of the certification process for large wind turbine blades. That testing is usually performed about the flapwise and edgewise axes independently but a new method for resonant fatigue testing has been developed in which the flapwise and edgewise directions are tested simultaneously, thus also allowing the interactions between the two mutually perpendicular loads to be investigated. The method has been evaluated by comparing the Palmgren–Miner damage sum around the cross-section at selected points along the blade length that results from a simulated service life, as specified in the design standards, and testing. Bending moments at each point were generated using wind turbine simulation software and the test loads were designed to cause the same amount of damage as the true service life. The mode shape of the blade was tuned by optimising the position of the excitation equipment, so that the bending moment distribution was as close as possible to the target loads. The loads were converted to strain–time histories using strength of materials approach, and fatigue analysis was performed. The results show that if the bending moment distribution is correct along the length of the blade, then dual-axis resonant testing tests the blade much more thoroughly than sequential tests in the flapwise and edgewise directions. This approach is shown to be more representative of the loading seen in service and can thus contribute to a potential reduction in the weight of wind turbine blades and the duration of fatigue tests leading to reduced cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.