Abstract

Supersaturation behavior of model drugs, danazol, griseofulvin, itraconazole, vemurafenib, and ER-34122, was analyzed by both thermodynamic and kinetic approaches to better understand the absorption characteristics of amorphous pharmaceuticals. For each amorphous drug, the extent of supersaturation during in vitro dissolution was proved to be similar to that in vivo, which was estimated from relative bioavailability data. The theoretical limit of supersaturation was thermodynamically calculated from several thermal properties and water sorption isotherms of amorphous solids. in vitro and in vivo supersaturation of amorphous vemurafenib was thermodynamically controlled and was in good agreement with the theoretical limit. On the contrary, the supersaturation ratio of the other four drugs was highly overestimated by the thermodynamic calculation. However, it was satisfactorily explained by considering supersaturation stability, which indicated how long supersaturation can be maintained without crystal nucleation. Supersaturation stability was evaluated by measuring the induction time for crystal nucleation kinetically. Concomitant use of thermodynamic and kinetic approaches is, therefore, invaluable in evaluating supersaturation behavior of amorphous materials and assessing development potential of poorly water-soluble drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.