Abstract

In order to better explain and predict the dissolution characteristics of binary drug delivery systems (BDDSs), the dissolution behaviors of co-crystal (CC) and co-amorphous (CA) systems of sacubitril (SCB) and valsartan (VST) were evaluated in vitro and in vivo by thermodynamic and kinetic methods. The CCs of SCB and VST were prepared into a CA state through rotary evaporation. Solid-state properties were systematically evaluated. Herein, based on the results from previous studies of single-phase systems, we used thermodynamic methods to evaluate the increase in drug dissolution rate after BDDSs change from the crystalline to the amorphous state. After comparing the predicted and measured dissolution rate enhancement of the CC and CA systems, this paper attempts to explain the dissolution rate characteristics of the BDDSs. We then evaluated the bioavailability of two BDDSs in beagle dogs to confirm that there was no discrepancy in vivo with the results obtained in vitro. The results exhibited that there is strong intermolecular interaction between SCB and VST and good physical stability for the CA system. Compared with the CC, the bioavailability of SCB and VST in the CA system increased by 313.9% and 130.5%, respectively. The predicted dissolution rate ratio between CC and CA systems and their actual intrinsic dissolution rates differed by only a factor of 2.5, demonstrating the good correlation between the predicted and measured values. In the future, this method could be expanded to a variety of new samples and exciting drug prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.