Abstract

AbstractThis paper presents an application of the embedded data collector (EDC) approach using strain and acceleration measurements at the top and bottom of a pile (drilled shaft) during dynamic loading (Statnamic) for estimation of static side and tip resistance. For assessment of the skin friction, wave propagation along the pile was modeled as a one-dimensional (1D) wave equation with nonlinear static skin friction and viscous damping. The soil–pile system was divided into segments, and each segment was characterized with independent multilinear skin friction. The skin friction of each segment was determined by least-squares fitting of computed particle velocities to the measured data at the top and bottom of the pile. For assessment of the tip resistance, the pile tip was modeled as a single—degree-of-freedom nonlinear system. A nonlinear stiffness–displacement relationship was determined by balancing force and energy from inertia, damping, and stiffness against the measured tip data. The technique wa...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.