Abstract

The purpose of this work is to evaluate the performance of applying patient dosimetric information induced by individual uniform-intensity radiation fields in organ-at risk (OAR) dose-volume histogram (DVH) prediction, and extend to DVH prediction of planning target volume (PTV). Ninety nasopharyngeal cancer intensity-modulated radiation therapy (IMRT) plans and 60 rectal cancer volumetric modulated arc therapy (VMAT) plans were employed in this study. Of these, 20 nasopharyngeal cancer cases and 15 rectal cancer cases were randomly selected as the testing data. The DVH prediction was performed using two methods. One method applied the individual dose-volume histograms (IDVHs) induced by a series of fields with uniform-intensity irradiation and the other method applied the distance-to-target histogram and the conformal-plan-dose-volume histogram (DTH + CPDVH). The determination coefficient R2 and mean absolute error (MAE) were used to evaluate DVH prediction accuracy. The PTV DVH prediction was performed using the IDVHs. The PTV dose coverage was evaluated using D98, D95, D1 and uniformity index (UI). The OAR dose was compared using the maximum dose, V30 and V40. The significance of the results was examined with the Wilcoxon signed rank test. For PTV DVH prediction using IDVHs, the clinical plan and IDVHs prediction method achieved mean UI values of 1.07 and 1.06 for nasopharyngeal cancer, and 1.04 and 1.05 for rectal cancer, respectively. No significant difference was found between the clinical plan results and predicted results using the IDVHs method in achieving PTV dose coverage (D98,D95,D1 and UI) for both nasopharyngeal cancer and rectal cancer (p-values ≥ 0.052). For OAR DVH prediction, no significant difference was found between the IDVHs and DTH + CPDVH methods for the R2, MAE, the maximum dose, V30 and V40 (p-values ≥ 0.087 for all OARs). This work evaluates the performance of dosimetric information of several individual fields with uniform-intensity radiation for DVH prediction, and extends its application to PTV DVH prediction. The results indicated that the IDVHs method is comparable to the DTH + CPDVH method in accurately predicting the OAR DVH. The IDVHs method quantified the input features of the PTV and showed reliable PTV DVH prediction, which is helpful for plan quality evaluation and plan generation.

Highlights

  • The purpose of this work is to evaluate the performance of applying patient dosimetric information induced by individual uniform-intensity radiation fields in organ-at risk (OAR) dose-volume histogram (DVH) prediction, and extend to DVH prediction of planning target volume (PTV)

  • The results indicated that the individual dose-volume histograms (IDVHs) method is comparable to the distance-to-target histogram (DTH) + conformal plan dose-volume histogram (CPDVH) method in accurately predicting the OAR DVH

  • In the field of radiotherapy, making dose-volume histogram (DVH) or dose distribution of organ at risk (OAR) predictions based on prior plan data could provide a valuable dose-volume reference that could help planners determine whether the quality of a treatment plan could be further i­mproved[3,4,5,6,7,8,9,10,11] and could be used as the dose-volume optimization input constraints in a treatment planning system (TPS) to assist in plan ­generation[12,13,14,15,16,17]

Read more

Summary

Introduction

The purpose of this work is to evaluate the performance of applying patient dosimetric information induced by individual uniform-intensity radiation fields in organ-at risk (OAR) dose-volume histogram (DVH) prediction, and extend to DVH prediction of planning target volume (PTV). For PTV DVH prediction using IDVHs, the clinical plan and IDVHs prediction method achieved mean UI values of 1.07 and 1.06 for nasopharyngeal cancer, and 1.04 and 1.05 for rectal cancer, respectively. No significant difference was found between the clinical plan results and predicted results using the IDVHs method in achieving PTV dose coverage (D98, D95, D1 and UI) for both nasopharyngeal cancer and rectal cancer (p-values ≥ 0.052). For OAR DVH prediction, no significant difference was found between the IDVHs and DTH + CPDVH methods for the ­R2, MAE, the maximum dose, V30 and V40 (p-values ≥ 0.087 for all OARs). A few studies have reported PTV DVH prediction using DTH

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call