Abstract

Background and purpose: To investigate if the Pencil Beam (PB) algorithm takes the disturbance of the dose distribution due to tissue inhomogeneities sufficiently into account in dynamic field shaping rotation therapy (called the dynamic arc treatment modality) for fractionated stereotactic radiation therapy of head and neck tumors. Material and methods: A treatment plan using the dynamic arc treatment modality of an oropharynx lesion on a humanoid phantom was evaluated. The same plan was calculated with three different calculation algorithms: the Clarkson and the PB algorithm (both available on the planning system of the Novalis ® system used for dynamic arc treatments), and the Collapsed Cone Convolution Superposition (CC) algorithm (used by the Pinnacle ® planning system). The three resulting plans are compared using isodose distributions and cumulative dose volume histograms (CDVHs). An intercomparison of the results of the three algorithms was performed to investigate how accurately each of them takes the influence of tissue inhomogeneities into account such as bony structures and air cavities often appearing in the head and neck region. Additionally, the resulting plans were compared with absolute and relative dosimetric measurements of the treatment plan on the humanoid phantom with thermoluminescent detectors and radiographic film, respectively. Results: All calculated dose distributions show a good agreement with the measured distribution except in the planning target volume (PTV) in and at the border of the air cavity. All three algorithms overestimate the dose in the PTV at the boundary with the low-density tissue, with 12, 10 and 7% for the Clarkson, the PB and the CC algorithm, respectively. The correspondence between the calculated dose distributions is reflected in the graphs of the CDVHs. They show similar curves for the PTV and the structures except for the left parotic gland and the myelum. Conclusions: The PB algorithm of the Novalis ® system calculates a treatment plan for the dynamic arc treatment modality adequately for fractionated stereotactic radiation therapy of head and neck tumors, except in the PTV in and at the border of the air cavity where the actual dose is overestimated. Care needs to be taken in clinical cases where it is critical to irradiate the air–tissue boundary to a sufficient dose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call