Abstract

BackgroundType 2 diabetes is a complex metabolic disorder with obesity being a major contributing factor in its development. Susceptibility loci for type 2 diabetes and obesity have been localized on different chromosomal regions by various genome-wide linkage scans. Of these chromosomal regions, 20q13 is one of the strongest linked regions for type 2 diabetes as well as obesity. On 20q13 lies DOK5 that seems to be a strong functional and positional candidate for type 2 diabetes and obesity because of its involvement in insulin signaling and immune responses. Hence, for the first time, we explored DOK5 as a potential type 2 diabetes and obesity susceptibility gene.MethodsWe sequenced 43 subjects for polymorphisms in functionally relevant regions of DOK5. A total of 10 SNPs that included 5 that were identified by sequencing and 5 additional SNPs from NCBI Variation Database were genotyped in 2,115 participants comprising of 1,073 patients with type 2 diabetes and 1,042 controls of Indo-European ethnicity from North India.ResultsWe identified a novel variant in intron 7 referred to as DK176673. We found nominal association of three SNPs-rs6064099 (OR = 0.75, P = 0.019), rs873079 (OR = 0.76, P = 0.036) and DK176673 (OR = 1.55, P = 0.037) with type 2 diabetes among normal-weight subjects [BMI < 23 kg/m2]. The haplotype GGC harboring rs6068916, rs6064099 and rs873079 showed strong association with type 2 diabetes among normal-weight subjects (OR = 1.37, P/Pperm = 5.8 × 10-3/0.037). Association analysis with obesity revealed that rs6064099 is associated with reduced susceptibility for obesity (OR = 0.48, P = 6.8 × 10-3). Also, haplotype GGC conferred increased susceptibility for obesity (OR = 1.27, P/Pperm = 9.0 × 10-3/0.039). Also, rs6064099 was significantly associated with reduced BMI [median(IQR) = 24.0(20.7-27.1) vs 23.9(20.2-26.8) vs 21.8(19.2-24.7) for GG vs GC vs CC, P = 7.0 × 10-3].ConclusionsWe identified DOK5 as a novel susceptibility gene for obesity and type 2 diabetes in North Indian subjects. Association of DOK5 variants both with obesity and type 2 diabetes suggests that these variants might modulate type 2 diabetes susceptibility through obesity.

Highlights

  • Type 2 diabetes is a complex metabolic disorder with obesity being a major contributing factor in its development

  • DOK5 polymorphisms We identified a total of 9 SNPs after sequencing the functionally significant regions of DOK5 including one novel SNP in intron 7 and 8 reported SNPs-rs6098099 (Intron 5), rs6068915 (Intron 5), rs6064099 (Intron 6), rs2840 (5’UTR), rs2842 (5’UTR), rs2841 (5’UTR), rs15899 (5’UTR) and rs2843 (5’UTR) (Figure 1)

  • DOK5 polymorphisms and type 2 diabetes A total of 10 SNPs were genotyped in the study population of 2,115 participants comprising of 1,073 patients with type 2 diabetes and 1,042 controls of Indo-European ethnicity from North India

Read more

Summary

Introduction

Type 2 diabetes is a complex metabolic disorder with obesity being a major contributing factor in its development. Susceptibility loci for type 2 diabetes and obesity have been localized on different chromosomal regions by various genome-wide linkage scans. Evidence for localization of susceptibility loci on different chromosomal regions for type 2 diabetes and obesity has been provided by various genome-wide linkage scans. Of these regions, 20q13 is one of the strongest candidate regions for type 2 diabetes which is documented to be linked to type 2 diabetes by more than 8. Exploration of 20q13 through positional candidate approach may facilitate identification of susceptibility genes for type 2 diabetes and obesity on this region

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.