Abstract
We evaluated four DNA vaccine candidates for their ability to produce virus-like particles (VLPs) and elicit a protective immune response against Foot-and-mouth disease virus (FMDV) in cattle. Two traditional DNA plasmids and two DNA minicircle constructs were evaluated. Both the pTarget O1P1-3C plasmid and O1P1-3C minicircle encoded a wild-type FMDV 3C protease to process the P1-2A polypeptide, whereas the O1P1-HIV-3CT minicircle used an HIV-1 ribosomal frameshift to down-regulate expression of a mutant 3C protease. A modified pTarget plasmid with a reduced backbone size, mpTarget O1P1-3CLT, used a 3C protease containing two mutations reported to enhance expression. All constructs produced mature FMDV P1 cleavage products in transfected cells, as seen by western blot analysis. Three constructs, O1P1-3C minicircles, pTarget O1P1-3C, and mpTarget O1P1-3CLT plasmids, produced intracellular VLP crystalline arrays detected by electron microscopy. Despite VLP formation in vitro, none of the DNA vaccine candidates elicited protection from clinical disease when administered independently. Administration of pTarget O1P1-3C plasmid enhanced neutralizing antibody titers when used as a priming dose prior to administration of a conditionally licensed adenovirus-vectored FMD vaccine. Further work is needed to develop these DNA plasmid-based constructs into standalone FMD vaccines in cattle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.