Abstract

Diamondlike carbon (DLC) coatings, particularly in the hydrogenated form, provide extremely low coefficients of friction in concentrated contacts. The objective of this investigation was to evaluate the performance of DLC coatings for potential application in foil bearings. Since in some applications the bearings experience a wide range of temperatures, tribological tests were performed using a single foil thrust bearing in contact with a rotating flat disk up to 500°C. The coatings deposited on the disks consisted of a hydrogenated diamondlike carbon film (H-DLC), a nonhydrogenated DLC, and a thin dense chrome deposited by the Electrolyzing™ process. The top foil pads were coated with a tungsten disulfide based solid lubricant (Korolon™ 900). All three disk coatings provided excellent performance at room temperature. However, the H-DLC coating proved to be unacceptable at 300°C due to lack of hydrodynamic lift, albeit the very low coefficient of friction when the foil pad and the disk were in contact during stop-start cycles. This phenomenon is explained by considering the effect of atmospheric moisture on the tribological behavior of H-DLC and using the quasihydrodynamic theory of powder lubrication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.