Abstract

Introduction: When divers are compressed to water depths deeper than 150 meter sea water (msw), symptoms of high-pressure neurological syndrome (HPNS) might appear due to rapid increase in pressure on the central nervous system during compression. The aim of this study was to first operate a new computerized tool, designed to monitor divers’ wellbeing and cognitive function, and to record the results. The second aim was to evaluate the feasibility and validity of the Physiopad software and HPNS questionnaires as a new tool for monitoring divers wellbeing in an operational setting, including sensible visualization and presentation of results.Methods: The Physiopad was operated onboard Deep Arctic (TechnipFMC Diving Support Vessel). The diving work was performed between 180 and 207 msw. The data from 46 divers were collected from the HPNS questionnaires, Hand dynamometry test, Critical Flicker Fusion Frequency test (CFFF), Adaptive Visual Analog Scale (AVAS), Simple Math Process (MathProc test), Perceptual Vigilance Task (PVT), and Time Estimation Task (time-wall).Result: Diver’s subjective evaluation revealed different symptoms, possibly also HPNS related, which lasted from 1 to 5 days in storage, with the common duration being 1 day. The results from Physiopad battery testing showed no signs of significant neurological alteration.Conclusion: The present study showed that there was no association between subjective measurements of HPNS and neuropsychometric test results. We also confirmed the feasibility of using the computerized test battery to monitor saturation divers at work. The HPNS battery and Physiopad software could be an important tool for monitoring diver’s health in the future. This tool was not used during the Bahr Essalam project to operationally evaluate any HPNS effect on divers as data analysis was performed post-project.

Highlights

  • When divers are compressed to water depths deeper than 150 meter sea water, symptoms of high-pressure neurological syndrome (HPNS) might appear due to rapid increase in pressure on the central nervous system during compression

  • Physiopad package is a compilation of HPNS questionnaires, Hand dynamometry test, Critical Flicker Fusion Frequency (CFFF) test, Adaptive Visual Analog Scale (AVAS), Simple Math Process (MathProc test), Perceptual Vigilance Task (PVT), and Time estimation task

  • The HPNS questionnaire consisted of questions related to known HPNS-related symptoms revealed in previous studies (Vaernes et al, 1988); visual, hearing, and temperature discomfort; nausea; vertigo; tremor; and myoclonia

Read more

Summary

Introduction

When divers are compressed to water depths deeper than 150 meter sea water (msw), symptoms of high-pressure neurological syndrome (HPNS) might appear due to rapid increase in pressure on the central nervous system during compression. These alternations are clinically recognized by tremor (Vaernes et al, 1983), electroencephalographic (EEG) abnormalities (Aarli et al, 1985), myoclonus (Abraini and Rostain, 1991), sleep disorders (Seo et al, 1998), nausea, headache, dizziness (Talpalar, 2007), and reduced performance in cognitive tests (Aarli et al, 1985) These symptoms will disappear during the storage phase as the body acclimatizes to the new stable pressure. The development of the symptoms was reported to be highly dependent on the diving depth and the compression rate (Ozgok Kangal and Murphy-Lavoie, 2018)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.