Abstract

Metallic materials suffering deformation store elastic strain. Evaluation of this strain energy is important for understanding the mechanical and physical properties of the materials. Although direct evaluation of the stored energy is difficult, it can be evaluated by determining the defect energy of dislocations induced by the deformation. Thus, a practicable method of evaluating the strain energy is to measure the dislocation density in metallic materials. The average and representative dislocation density can be estimated by X-ray diffraction (XRD) analysis. We have estimated the dislocation density of a magnesium alloy with hexagonal crystals by a modified Warren–Averbach analysis based on a modified Williamson–Hall plot using XRD profiles. The dislocation density value obtained by this method agrees with those reported previously. We found that the modified Warren–Averbach method is still a powerful method for evaluating the dislocation density in hexagonal crystals. [doi:10.2320/matertrans.M2010021]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.