Abstract

There is an increased need for quick screening tools enabling the detection of Waste Electrical and Electronic Equipment (WEEE), and in particular brominated flame retardants (BFRs), in polymeric materials. Unfortunately, common laboratory techniques might face matrix effects or encounter long sample preparation times. Therefore, an ambient desorption mass spectrometric technique such as Direct Analysis in Real Time - High Resolution Mass Spectrometry (DART-HRMS) might provide fast BFR identification in polymeric objects. Within this pilot-study, the potential of DART-HRMS for the detection of WEEE fractions has been tested on WEEE impacted consumer goods such as toys and food contact articles. The identification of polymeric material containing WEEE to date has relied on measuring multiple parameters such as; polymer purity, bromine and antimony content, as well as presence of rare earth elements (REEs). In this respect DART-HRMS demonstrated an excellent ability to identify BFRs in samples at WEEE relevant concentrations, and in certain cases, volatile antimony species could be detected. DART-HRMS can be used complementary to X-ray fluorescence (XRF) spectroscopy and thermal desorption GC-MS. However, more efforts to characterize DART-HRMS sensitivity limits for antimony detection are needed to ensure DART-HRMS adds value as a stand-alone screening technique for WEEE in contaminated polymers and consumer goods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call