Abstract
Stand-alone micro-grids (MGs) and grid-connected MGs with high penetration level of Distributed Generation (DG) are growing at a fast rate. In these grids, the power quality disturbances such as harmonics, inter-harmonics and deviation from the fundamental frequency are widespread. The influence of these disturbances on two categories of digital metering algorithms is evaluated in this paper. The first category is related to the measurement of the fundamental frequency component of current and voltage signals, which are used as inputs of the digital protection algorithms. Most of the relays only use fundamental frequency component of their input voltage and current signals to fulfill the desired protective functions. The accuracy of the protective relays highly depends on the performance of the applied algorithms for extracting the fundamental components. The second evaluated category is related to the reactive power calculation algorithms, which are used in the static VAr compensator (SVC) control system. Utilizing SVC is growing due to the DGs such as wind turbines magnify voltage fluctuations called flicker. Since the SVC compensates only the reactive power related to the fundamental frequency component, the reactive power signal should not be sensitive to the harmonics. In addition, the reactive power calculation should be fast enough that SVC can follow the abrupt changes to mitigate the flicker, efficiently. In this paper, frequency deviation, harmonic, and inter-harmonic phenomena are considered as the most causes for power quality problems. Their influence in digital metering algorithms is evaluated. It is confirmed that defining new indices is mandatory to fully reflect algorithms׳ accuracy and efficiency. Furthermore, the field measurements of instantaneous voltage and current of a wind farm and electric arc furnaces are used for the evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.