Abstract

AbstractAs the size of offshore wind turbines increases, a realistic representation of the spatiotemporal distribution of the incident wind field becomes crucial for modeling the dynamic response of the turbine. The International Electrotechnical Commission (IEC) standard for wind turbine design recommends two turbulence models for simulations of the incident wind field, the Mann spectral tensor model, and the Kaimal spectral and exponential coherence model. In particular, for floating wind turbines, these standard models are challenged by more sophisticated ones. The characteristics of the wind field depend on the stability conditions of the atmosphere, which neither of the standard turbulence models account for. The spatial and temporal distribution of the turbulence, represented by coherence, is not modeled consistently by the two standard models. In this study, the Mann spectral tensor model and the Kaimal spectral and exponential coherence model are compared with wind fields constructed from offshore measurements and obtained from large‐eddy simulations. Cross sections and durations relevant for offshore wind turbine design are considered. Coherent structures from the different simulators are studied across various stability conditions and wind speeds through coherence and proper orthogonal decomposition mode plots. As expected, the standard models represent neutral stratification better than they do stable and unstable. Depending upon the method used for generating the wind field, significant differences in the spatial and temporal distribution of coherence are found. Consequently, the computed structural design loads on a wind turbine are expected to vary significantly depending upon the employed turbulence model. The knowledge gained in this study will be used in future studies to quantify the effect of various turbulence models on the dynamic response of large offshore wind turbines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.