Abstract
ABSTRACTMonoclonal antibodies (mAbs) have emerged as the most promising category of recombinant proteins due to their high efficiency for the treatment of a wide range of human diseases. The complex nature of mAbs creates a great deal of challenges in both upstream and downstream manufacturing processes. Proportional expression and correct folding and assembly of the light chain and heavy chain are required for efficient production of the mAbs. In this regard, expression vector design has proven to have profound effects on the antibody expression level as well as its stability and quality. Here, we have explored the efficiency of different vector design strategies for the expression of a recombinant IgG1 antibody in Chinese hamster ovary (CHO) cells. The antibody expression level was analyzed in transient expression and stable cell pools followed by expression analysis on single-cell clones. While detectable amounts of antibody were observed in all three systems, dual-promoter single-vector system showed the highest expression level in transient and stable expression as well as the highest productivity among clonal cells. Our results here show the importance of vector design for successful production of whole mAbs in CHO cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.