Abstract

Due to the modernization of the agro-industrial sector, compounds with different toxicity and effects on human health and animal have been used and consequently affecting the environment. Among them, tetracycline (TC) stands out as one of the antibiotics most commonly used worldwide. This study evaluated the TC interaction with different fractions of peat in natura and humic substances, humic acid, fulvic acid, and humin. The different fractions of the organic matter were characterized by organic matter content, elemental analysis, spectroscopic analysis (E4/E6), and nuclear magnetic resonance of carbon 13 (NMR 13C), and the interaction between TC and different fractions of organic matter was made by fluorescence spectrometry. We used the tangential ultra-filtration system for determining the complexation capability of humic substances (HSs), fulvic acids (FA), humic acids (HA), and humin (HUM) from peat with TC. Finally, we evaluated sorption kinetic experiments between TC and peat in natura. The peat samples, humic substances, FAs, HAs, and HUM were characterized by organic matter (OM), atomic ratio (H/C and C/O) calculated from elemental analysis data, functional groups quantified by NMR 13C data, and E4/E6 ratio, and the results show significant differences in the structural characteristics of the fractions of OM influenced by the type of microorganisms and environmental factors associated with this decomposition. Data analysis revealed the strongest interaction between HUM and TC (59.19 mg g−1), followed by interaction between HS and TC (43.36 mg g−1 HS). In the sorption studies, these conditions showed the best model to describe the system under consideration using the Freundlich model. The results showed that the different fractions of the OM extracted from peat show different contributions that affect the bioavailability of contaminants to the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.