Abstract

Soldering and erosion are two of the biggest serious problems faced in the die-casting industries. Cermet coatings utilized by high-velocity oxy-fuel (HVOF) spray technology have been developed in an attempt to overcome these problems. MoB-based cermet feedstock powders (MoB/NiCr and MoB/CoCr) were deposited on SKD61 (AISI H-13) substrates used as a preferred die (mold) material. Microstructural and mechanical properties of the coatings have been characterized by scanning electron microscopy, x-ray diffraction, Romulus bond strength test, and Vickers microhardness test. The durability of these coatings on cylindrical specimens against soldering also has been investigated by immersing in molten aluminum alloy (ADC-12) for 25 h at 670 °C and subsequently, compared with that of NiCr and CoMoCr coatings. Both types of MoB-based cermet coatings have shown high soldering resistance as negligible intermetallic formation occurred during the immersion test. This result is attributed to the existence of multiple inert borides in the coatings. The coatings also showed excellent mechanical properties. MoB/NiCr, in particular, showed higher bond strength, hardness, and wear resistance than MoB/CoCr. This suggests that MoB/NiCr will show higher durability than MoB/CoCr, NiCr, and CoMoCr during high pressure die-casting of aluminum alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call