Abstract

Increasing die size and large coefficient of thermal expansion (CTE) mismatch in flip-chip plastic ball grid array (FC-PBGA) packages have made die fracture a major failure mode during reliability testing. Most die fracture observed before was die backside vertical cracking, which was caused by excessive package bending and backside defects. However, due to die edge defects induced by the singulation process and the choice of underfill material, an increasing number of die cracks were found to initiate from die edge and propagate horizontally across the die. In order to improve package reliability and performance, die edge cracking has to be eliminated. An extensive finite element analysis was completed to investigate die edge cracking and find its solutions. A fracture mechanics approach was used to evaluate the effect of various package parameters on die edge initiated fracture. Strain energy release rate was found to be an effective technique for evaluating die edge initiated fracture from singulation-induced flaws. The impact of initial flaw size and a variety of package parameters was investigated. Unlike in die backside cracking, the dominant parameters causing die edge horizontal fracture are more closely related to local effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.