Abstract

BackgroundReverse transcription-quantitative PCR (RT-qPCR) is commonly used to diagnose SARS-CoV-2, but it has limited sensitivity in detecting the virus in asymptomatic close contacts and convalescent patients. In this study, we propose the use of reverse transcription-digital droplet PCR (RT-ddPCR) to detect SARS-CoV-2 in clinical samples. MethodsThe clinical performance of RT-ddPCR targeting of ORF1ab and N genes was evaluated in parallel with RT-qPCR using 200 respiratory samples collected from close contacts and patients at different phases of infection. ResultsThe limits of detection (LODs) for RT-ddPCR assays were determined using six dilutions of ACCUPLEX SARS-Cov-2 reference material. The LODs of ORF1ab and N genes were 3.7 copies/reaction and 2.2 copies/reaction, respectively. Compared to RT-qPCR, RT-ddPCR increased the positive rate by 12.0% in 142 samples from SARS-CoV-2-infected patients. Additionally, RT-ddPCR detected SARS-CoV-2 in three of 26 specimens from close contacts that tested negative by RT-qPCR, and infection was confirmed using follow-up samples. Finally, RT-ddPCR improved the equivocal results from RT-qPCR in 56.3% (9/16) of convalescent patient samples. ConclusionsDetecting SARS-CoV-2 in samples with low viral loads using RT-qPCR can be challenging. However, our study suggests that RT-ddPCR, with its higher sensitivity and accuracy, is better suited for detecting low viral copies in samples, particularly those from close contacts and convalescent patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.