Abstract

Acute and chronic wounds contribute to increased morbidity and mortality in affected people and impose significant financial burdens on healthcare systems. For these challenging wounds, acellular dermal matrices (ADMs) have been used as a biological wound coverage. Unlike engineered dermal matrices, ADMs are prepared through the removal of cells from skin, while preserving the extracellular matrix structure and function. In this study, our primary objective was to develop a detergent-free method for decellularization of the skin to mitigate chemical stress on matrix molecules. Then, we performed a set of in vitro and in vivo experiments to compare this method with nonionic and anionic detergent methods. All decellularization methods satisfactorily removed cells and supported fibroblast growth and migration in vitro. Sulfated glycosaminoglycan content was reduced significantly (p < 0.05) only in the ionic detergent treatment group. In contrast to the detergent-free method, all detergent-based methods significantly reduced scaffold mechanical strength and elastin content (p < 0.05). Three weeks after transplantation, the results showed reepithelialization, angiogenesis, and migration of host cell into scaffolds with no induction of immunogenic reaction in all ADM groups tested. In our study, the detergent-free method showed better preservation of matrix composition and biomechanical properties, but after transplantation, all methods of ADM preparation resulted in equally biofunctional matrices as wound coverage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.