Abstract

This study aims to present various design aspects and realizable performance of the natural gas fired semi-closed oxy-fuel combustion combined cycle (SCOC-CC). The design parameters of the cycle are set up on the basis of the component technologies of today’s state-of-the-art gas turbines with a turbine inlet temperature between 1400 °C and 1600 °C. The most important part of the cycle analysis is the turbine cooling, which considerably affects the cycle performance. A thermodynamic cooling model is introduced in order to predict the reasonable amount of turbine coolant needed to maintain the turbine blade temperature of the SCOC-CC at the levels of those of conventional gas turbines. The optimal pressure ratio ranges of the SCOC-CC for two different turbine inlet temperature levels are researched. The performance penalty due to the CO2 capture is examined. The influences of the purity of the oxygen provided by the air separation unit on the cycle performance are also investigated. A comparison with the conventional combined cycle, adopting a postcombustion CO2 capture, is carried out, taking into account the relationship between the performance and the CO2 capture rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call