Abstract
The knowledge and competency assessment have paramount significance in the education system. Recent scenario of COVID-19 witnessed the need of migrating from traditional education system to a modern online learning environment. Currently in the online assessment process, descriptive exam answer scripts evaluation is one of the tedious tasks to the teachers. The knowledge assessment may sometimes lead to biasing based on the mood of the evaluator and other circumstancing parameters. In general, though the evaluation process is well defined, still when two evaluators evaluate the same scripts, there are very less chances to award the same marks. The proposed model aims to address such real time issues and outer performs of the evaluation of descriptive answer scripts by using text semantic similarity measure. The proposed model works based on the word mover’s distance, whose purpose is to measure the semantic similarity among the actual answer and the answer given by the students. In this work, the data set is generated from the descriptive on-line examination platform. The data set contains student’s answers, which can pre-process initially and measure the semantic similarity among key answer and student’s answers. The given automatic evaluation procedure, could guarantee the impartiality and concealment of the evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.