Abstract

Objectives: This study aims to assess the diagnostic accuracy of an artificial intelligence (AI) system employing deep learning for identifying dental plaque, utilizing a dataset comprising photographs of permanent teeth. Materials and Methods: In this study, photographs of 168 teeth belonging to 20 patients aged between 10 and 15 years, who met our criteria, were included. Intraoral photographs were taken of the patients in two stages, before and after the application of the plaque staining agent. To train the AI system to identify plaque on teeth with dental plaque that is not discolored, plaque and teeth were marked on photos with exposed dental plaque. One hundred forty teeth were used to construct the training group, while 28 teeth were used to create the test group. Another dentist reviewed images of teeth with dental plaque that was not discolored, and the effectiveness of AI in detecting plaque was evaluated using pertinent performance indicators. To compare the AI model and the dentist’s evaluation outcomes, the mean intersection over union (IoU) values were evaluated by the Wilcoxon test. Results: The AI system showed higher performance in our study with a precision of 82% accuracy, 84% sensitivity, 83% F1 score, 87% accuracy, and 89% specificity in plaque detection. The area under the curve (AUC) value was found to be 0.922, and the IoU value was 76%. Subsequently, the dentist’s plaque diagnosis performance was also evaluated. The IoU value was 0.71, and the AUC was 0.833. The AI model showed statistically significantly higher performance than the dentist (P < 0.05). Conclusions: The AI algorithm that we developed has achieved promising results and demonstrated clinically acceptable performance in detecting dental plaque compared to a dentist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.