Abstract

To clarify the essential deformation characteristics of silica-filled rubber, we construct the finite element homogenization models of silica-filled rubber with newly proposed nonaffine molecular chain network model of rubber. These models can reflect the generation of complicated inter-fillers connecting phases where the characteristics of rubber are intricately changed depending on the volume fraction of silica coupling agent and relative size of particles and their location. The results obtained clarified the essential physical enhancement mechanisms of deformation resistance and hysteresis loss for rubber filled with silica with different distribution patterns under diffrent rate of deformation. The volume fraction of coupling agent essentially affects the deformation behavior of silica filled rubber which suggests the high controlability of the material characteristics of silica filled rubber as compared with carbon black filled rubber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call