Abstract
Preserving authorship anonymity is paramount to protect activists, freedom of expression, and critical journalism. Although there are several mechanisms to provide anonymity on the Internet, one can still identify anonymous authors through their writing style. With the advances in neural network and natural language processing research, the success of a classifier when identifying the author of a text is growing. On the other hand, new approaches that use recurrent neural networks for automatic generation of obfuscated texts have also arisen to fight anonymity adversaries. In this work, we evaluate two approaches that use neural networks to generate obfuscated texts. The first approach uses Generative Adversarial Networks to train an encoder–decoder to transform sentences from an input style into a target style. The second one trains an auto encoder with Gradient Reversal Layer to learn invariant representations. In our experiments, we compared the efficiency of both techniques when removing the stylistic attributes of a text and preserving its original semantics. Our evaluation on real texts clarifies each technique’s trade-offs for Portuguese texts and provides guidance on practical deployment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.