Abstract
Personalized radiotherapy planning depends on high-quality delineation of target tumors and surrounding organs at risk (OARs). This process puts additional time burdens on oncologists and introduces variability among both experts and institutions. To explore clinically acceptable autocontouring solutions that can be integrated into existing workflows and used in different domains of radiotherapy. This quality improvement study used a multicenter imaging data set comprising 519 pelvic and 242 head and neck computed tomography (CT) scans from 8 distinct clinical sites and patients diagnosed either with prostate or head and neck cancer. The scans were acquired as part of treatment dose planning from patients who received intensity-modulated radiation therapy between October 2013 and February 2020. Fifteen different OARs were manually annotated by expert readers and radiation oncologists. The models were trained on a subset of the data set to automatically delineate OARs and evaluated on both internal and external data sets. Data analysis was conducted October 2019 to September 2020. The autocontouring solution was evaluated on external data sets, and its accuracy was quantified with volumetric agreement and surface distance measures. Models were benchmarked against expert annotations in an interobserver variability (IOV) study. Clinical utility was evaluated by measuring time spent on manual corrections and annotations from scratch. A total of 519 participants' (519 [100%] men; 390 [75%] aged 62-75 years) pelvic CT images and 242 participants' (184 [76%] men; 194 [80%] aged 50-73 years) head and neck CT images were included. The models achieved levels of clinical accuracy within the bounds of expert IOV for 13 of 15 structures (eg, left femur, κ = 0.982; brainstem, κ = 0.806) and performed consistently well across both external and internal data sets (eg, mean [SD] Dice score for left femur, internal vs external data sets: 98.52% [0.50] vs 98.04% [1.02]; P = .04). The correction time of autogenerated contours on 10 head and neck and 10 prostate scans was measured as a mean of 4.98 (95% CI, 4.44-5.52) min/scan and 3.40 (95% CI, 1.60-5.20) min/scan, respectively, to ensure clinically accepted accuracy. Manual segmentation of the head and neck took a mean 86.75 (95% CI, 75.21-92.29) min/scan for an expert reader and 73.25 (95% CI, 68.68-77.82) min/scan for a radiation oncologist. The autogenerated contours represented a 93% reduction in time. In this study, the models achieved levels of clinical accuracy within expert IOV while reducing manual contouring time and performing consistently well across previously unseen heterogeneous data sets. With the availability of open-source libraries and reliable performance, this creates significant opportunities for the transformation of radiation treatment planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.