Abstract

As a key component of gene regulation, transcription factors (TFs) play an important role in a number of biological processes. To fully understand the underlying mechanism of TF-mediated gene regulation, it is therefore critical to accurately identify TF binding sites and predict their affinities. Recently, deep learning (DL) algorithms have achieved promising results in the prediction of DNA-TF binding, however, various deep learning architectures have not been systematically compared, and the relative merit of each architecture remains unclear. To address this problem, we applied four different deep learning architectures to SELEX-seq and HT-SELEX data, covering three species and 35 families. We evaluated and compared the performance of different deep neural models using 10-fold cross-validation. Our results indicate that the hybrid CNN + DNN model shows the best performances. We expect that our study will be broadly applicable to modeling and predicting TF binding specificity when more high-throughput affinity data are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.