Abstract

A critical factor that influences the success of an in-vitro fertilization (IVF) treatment cycle is the quality of the transferred embryo. Embryo morphology assessments, conventionally performed through manual microscopic analysis suffer from disparities in practice, selection criteria, and subjectivity due to the experience of the embryologist. Convolutional neural networks (CNNs) are powerful, promising algorithms with significant potential for accurate classifications across many object categories. Network architectures and hyper-parameters affect the efficiency of CNNs for any given task. Here, we evaluate multi-layered CNNs developed from scratch and popular deep-learning architectures such as Inception v3, ResNET-50, Inception-ResNET-v2, NASNetLarge, ResNeXt-101, ResNeXt-50, and Xception in differentiating between embryos based on their morphological quality at 113 h post insemination (hpi). Xception performed the best in differentiating between the embryos based on their morphological quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.