Abstract

The rate of change of the geomagnetic field (dB/dt) observed at Earth’s surface has been used as a proxy of geomagnetically induced currents, which are known to be hazardous for grounded technological systems such as high-voltage power grid systems. The dB/dt rates have been well characterized in the high latitude region (≳60°), but much less information is available for the low latitudes to date. To overcome this limitation, we have examined dB/dt rates on the H component of the geomagnetic field as measured by an array of stations operated by the EMBRACE Magnetometer Network in Brazil. The main focus is to characterize dB/dt occurrence at very low latitudes (≲22°) of the Brazilian peculiar territory, whose magnetic measurements are influenced by the equatorial electrojet and the presence of the South Atlantic Magnetic Anomaly (SAMA). The period investigated is from 2021 to 2022, over the ascending phase of the solar cycle 25. The statistical analysis demonstrates that dB/dt peak magnitudes are generally below 0.5 nT/s during magnetic storms, and exhibit a dependence on the solar cycle for the station near the center of the SAMA. However, we obtain for a particular case in 2021 that dB/dt reached 1.35 nT/s in magnitude at the magnetic equator during daytime, which is a significant value even for higher latitudes. A case study of the induced geoelectric fields during this event shows that the conductivity structure beneath two compared sites plays a major role in the amplitude of such fields than dB/dt amplitude. Also, the MLT distributions of dB/dt indicate that ultra-low frequency waves can be a major source of these signals in lower latitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call