Abstract

This work was aimed at investigating damage evolution within sandwich panels consisting of aluminum skins and Nomex™ honeycomb core, with three different values of the core densities, subjected to multiple impacts. Repeated impacts at low energy were conducted using an impact fatigue machine. Bending tests were conducted to determine the residual stiffness after impacts in order to analyze the evolution of a damage parameter D. A model was therefore proposed for describing the changes in this parameter as a function of impact cycles N. After repeated impacts, the D(N) curves are characterized by an S-shaped curve. A good agreement is observed between model and experimental results, the maximum standard deviation being less than 7% for different densities. Microscopic observations of the impacted specimens were conducted in order to evaluate the crater growth (associated with permanent indentation). The influence of the number of impacts on the dimensions of the impact zone has also been evaluated. For all the core densities, the permanent indentation gradually increases as a function of impact cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.