Abstract
Increased human activity and consumption of natural energy resources have led to decline in fossil fuel. These current methods of energy production are not compatible with the environment. In this study catalyst-less and mediator-less membrane microbial fuel cell (CAML-MMFC) represents a new method for simultaneous dairy industry wastewater treatment and bioelectricity generation. The CAML-MMFC used was designed as two chambered that included an anaerobic anode and aerobic cathode compartment and was separated from each other by a proton exchange membrane. The anode and cathode electrodes were made from graphite plate. Current intensity, power density and voltage produced from wastewater as fuel were measured and the effluent from the anode compartment was examined to evaluate pollutant decrease. The maximum current intensity and power density produced were respectively 3.74mA and 621.13mW/m2 on the anode surface, at OLR equal to 53.22kgCOD/m3d and at the external resistance of 1kΩ. The maximum voltage produced was 0.856V at OLR equal to 53.22kgCOD/m3d and at temperature 35oC. The maximum coulombic efficiency of 37.16% was achieved at OLR equal to 17.74kgCOD/m3d. The HRT was examined as a factor influencing the power generation and when it was 5 day, maximum voltage and power density were obtained. The maximum removal efficiency of COD, BOD5, NH3, NH4+, dissolved phosphorus, phosphorus in suspended solids, SO42−, TSS, and VSS was respectively achieved at 90.46%, 81.72%, 73.22%, 69.43%, 31.18%, 72.45%, 39.43%, 70.17% and 64.6%. The results showed that generating bioelectricity and dairy industry wastewater treatment by CAML-MMFC are a good alternative for producing energy and treating wastewater at the same time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.