Abstract

Background: Induced pluripotent stem cells (iPSC) are a type of pluripotent stem cell derived from adult somatic cells that have been genetically reprogrammed to an embryonic stem (ES) cell-like state through the forced expression of genes and factors important for maintaining the defined properties of ES cells. So far there are very few experiments that have been able to prove that nanomaterial-based scaffold can cultivate and maintain the iPSC as an alternative to feeder-free maintenance of iPSC. Methods: The present experiment has given us fundamental information on ex vivo canine iPSC behavior on -OH functionalized single and multi-walled carbon nanotube (CNT) scaffold. Here in we evaluated the cytocompatibility of iPSC cultured on MEF feeder, OH-SWCNT and OH-MWCNT. Result: We have seen very wonderful growth of ciPSC on CNTs similar to feeder. The cells were positive for alkaline phosphatase staining and expressed pluripotent markers. Cytotoxicity analysis revealed that -OH functionalized CNTs provide a milieu of low cytotoxicity. With this test we can interpret that -OH functionalized CNT can be used as xeno-free substrate to support the maintenance of iPSC in an undifferentiated state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.