Abstract

ABSTRACT
 An Allium cepa root cells assay was used to assess cytotoxic and genotoxic impacts on Pharmaceutical industrial effluent in Kano Metropolis. An industrial effluent's physicochemical characteristics and heavy metal composition were assessed, and the readings were found to be higher than the required levels, demonstrating that it had not been treated before disposal. A set of 45 onion bulbs were grown for 96 hours in pharmaceutical effluent that included 2.5, 5.0, 7.5, and 10.0% (v/v), with distilled water serving as the control. All three root tips from each replication's treated bulbs were plucked at 96 hours and prepared for cytogenetic analysis using the aceto-carmine squashed procedure. At higher doses of industrial effluents, the root tips were highly cytotoxic, and their growth was strongly retarded. Exposure to the effluents inhibited root growth with an EC50 value of 6.3%. An analysis of variance (ANOVA) revealed a significant difference (P 0.05) in the average root growth of Allium cepa subjected to various pharmaceutical effluent concentrations. Mitosis Index (MI) rapidly reduced when effluent concentrations rose compared to control, whereas mitotic inhibition rose with rising effluent concentrations compared to controls. The pharmaceutical effluent triggered chromosomal abnormalities in Allium cepa root tip cells, particularly sticky chromosomes, Binucleated cells, and Bridge chromosomes being most commonly seen at lower doses of 2.5%. It was discovered that the compounds present in effluent might harm living things and, if left untreated, could poison the environment. Industrialists need to be legally required to switch their operations to environmentally friendly technology after it was determined that industrial effluents pose an environmental danger and can result in a number of human illnesses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call