Abstract

Per- and polyfluoroalkyl substances (PFAS) have emerged as contaminants of global concern. Among several PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are persistent and bioaccumulative compounds. We investigated the cyto-genotoxic potential of PFOS to Allium cepa root meristem cells. The A. cepa root tips were exposed to 6 different concentrations (1-100 mg L-1 ) of PFOS for 48 h. Reduction in mitotic index and chromosomal aberrations was measured as genotoxic endpoints in meristematic root cells. Exposure to PFOS significantly affected cell division by reducing the miotic index at higher concentrations (>10 mg L-1 ). The median effect concentration of PFOS to elicit cytotoxicity based on the mitotic index was 43.2 mg L-1 . Exposure to PFOS significantly increased chromosomal aberrations at concentrations >25 mg L-1 . The common aberrations were micronuclei, vagrant cells, and multipolar anaphase. The alkaline comet assay revealed a genotoxic potential of PFOS with increased tail DNA percentage at concentrations >25 mg L-1 . To our knowledge, this is the first study to report the cyto-genotoxic potential of PFOS in higher plants. Environ Toxicol Chem 2021;40:792-798. © 2020 SETAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.