Abstract

Inland waters across the United States (US) are at potential risk for increased outbreaks of toxic cyanobacteria blooms events resulting from elevated water temperatures and extreme hydrologic events attributable to climate change and increased nutrient loadings associated with intensive agricultural practices. Current monitoring efforts are limited in scope due to resource limitations, analytical complexity, and data integration efforts. The goals of this study were to validate an algorithm for satellite imagery that could potentially be used to monitor surface cyanobacteria events in near real-time to provide a compressive monitoring capability for freshwater lakes (>100ha). The algorithm incorporated narrow spectral bands specific to the European Space Agency's (ESA's) MEdium Resolution Imaging Spectrometer (MERIS) instrument that were optimally oriented at phytoplankton pigment absorption features including phycocyanin at 620nm. A validation of derived cyanobacteria cell counts was performed using available in situ data assembled from existing monitoring programs across eight states in the eastern US over a 39-month period (2009–2012). Results indicated that MERIS provided robust estimates for low (10,000–109,000 cells/mL) and very high (>1,000,000 cells/mL) cell enumeration ranges (approximately 90% and 83%, respectively). However, the results for two intermediate ranges (110,000–299,000 and 300,000–1,000,000 cells/mL) were substandard, at approximately 28% and 40%, respectively. The confusion associated with intermediate cyanobacteria cell count ranges was largely attributed to the lack of available taxonomic data and distinction of natural counting units for the in situ measurements that would have facilitated conversions between cell counts and cell volumes. The results of this study document the potential for using MERIS-derived cyanobacteria cell count estimates to monitor freshwater lakes (>100ha) across the eastern US.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.