Abstract

Pancreatic cancer is considered as one of the most lethal type of cancer with a poor 5-year survival rate. Cancer metastasis represents one of the primary cause which limits therapy against this disease. Current chemotherapeutic approaches are largely ineffective, thus calling for the development of alternative strategies to combat this disease. In this regard, numerous studies have reported the anticancer effect of curcumin in different types of cancer including pancreatic cancer. However, low aqueous solubility, poor stability and decreased bioavailability associated with native curcumin holds back its use in clinical settings. In order to enhance its therapeutic value, polymeric nanoparticles (NPs) represent an ideal delivery system. Further, surface modification of NPs with various macromolecules, such as chitosan and polyethylene glycol (PEG) holds tremendous potential for improving the bioavailability and circulation time of native drug in the blood. In the present study, we have explored the above approach to formulate curcumin-loaded Poly d,l-lactide-co-glycolide (PLGA) NPs and further surface coated it with chitosan and PEG (CNPs) with anticipation to reduce the limitations associated with native curcumin delivery for achieving an optimum therapeutic effect. Results revealed that NPs are of nanometre range having smooth and spherical surface morphology and with an efficient loading of curcumin. In vitro, cellular studies revealed superior cytotoxicity, enhanced anti-migratory, anti-invasive and apoptosis-inducing ability of CNPs in metastatic pancreatic cancer in comparison to a native counterpart. Thus, we anticipate that the results from these studies can open up novel options for the treatment of pancreatic cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.