Abstract

Accurate thermodynamic models for phase equilibria calculations of carbon dioxide mixtures with other gases are of high importance for the safe and economic design of carbon capture and storage (CCS) technologies. In this work, we assess the capability of Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), Peng–Robinson (PR) cubic equations of state (EoS), as well as Statistical Associating Fluid Theory (SAFT) and Perturbed-Chain SAFT (PC-SAFT) in modeling vapor–liquid equilibria for binary mixtures of CO2 with CH4, N2, O2, SO2, Ar, and H2S, and for the ternary mixture CO2–N2–O2. Liquid density calculations for some of these mixtures are also performed. Experimental data available are used to assess the accuracy of the models. Two different expressions are used for the calculation of parameter α in PR EoS. PC-SAFT is, on average, more accurate than cubic EoS and SAFT when no binary interaction parameter is used. However, when a binary interaction parameter fitted to the experimental data is used, model correla...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.