Abstract

Zero boil-off (ZBO) storage of cryogenic liquids can be used both for an integrated cold source combined with mechanical cryocoolers, and long-term lossless storage of cryogenic propellants such as liquid hydrogen and oxygen. A ZBO system for space application should be less weight and high efficiency. Pulse tube cryocoolers with linear compressors for space application are used as the cold source to compensate heat inputs to the ZBO dewar which have a variety of new insulation technologies. This paper describes an evaluation method for evaluating the systematic characteristics of the ZBO system. For different cryogenic liquids, different solutions comprised of the cryocooler with different cooling capacity and the dewar with different adiabatic means, are analyzed and evaluated from feasibility, average power consumption, working mode and fluctuations of the temperature and pressure. The results show that the solution of the ZBO dewar matched with a single-stage cryocooler is preferred for liquid oxygen and nitrogen storage, and the intermittent working mode is more power efficient than the continuous working mode, while its temperature and pressure fluctuations are a little larger. The solution of the ZBO dewar with a cryocooler cooled screen matched with a multi-stage cryocooler is preferred for liquid neon, hydrogen and helium storage, and the continuous working mode is more feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.