Abstract
Under the backdrop of the “double-carbon” target, the primary grain-producing regions in China are confronted with the tasks of mitigating pollution and carbon emissions and ensuring food security. This paper explores the eco-efficiency of cropland utilization and the factors influencing the primary grain-producing regions in China, utilizing panel data from 13 provinces spanning the period from 2000 to 2019. The analysis employs three models: the super-efficiency SBM model, the Malmquist index model, and the random-effect panel Tobit model. The findings suggest the following: (1) Although the eco-efficiency of cropland utilization in China’s primary grain-producing regions did not reach the production frontier during the period of 2000–2019, it exhibited a high level with an overall upward trend. The limiting factor inhibiting the growth of total factor productivity is lower technical efficiency. (2) There is evident spatial variation in the eco-efficiency of cropland utilization across China, displaying a dynamic evolution from northeast > western > central > eastern to northeast > western > eastern > central. Total factor productivity in each province demonstrates an upward trend, with the east > northeast > west > central ranking. (3) Regarding the influencing factors, the utilization of agricultural production chemicals exerts a negative influence, while the proportion of government financial input, labor input, and irrigation index have a positive impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.