Abstract

A series of Pr3+/Ce3+ doped yttrium aluminium garnet (Y3Al5O12 or simply YAG) phosphors were synthesized to investigate the energy transfer between Pr3+ and Ce3+ for their potential application in a white light-emitting diode and quantum information storage and processing. The excitation and emission spectra of YAG:Pr3+/Ce3+ were measured and analyzed, and it revealed that the reabsorption between Pr3+ and Ce3+ was so weak that it can be ignored, and the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2) did occur. By analyzing the excitation and the emission spectra, the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2) was examined in detail with an original strategy deduced from fluorescence dynamics and the Dexter energy transfer theory, and the critical distances of energy transfer were derived to be 7.9 Å and 4.0 Å for Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2), respectively. The energy transfer rates of the two processes of various concentrations were discussed and evaluated. Furthermore, for the purpose of sensing a single Pr3+ state with a Ce3+ ion, the optimal distance of Ce3+ from Pr3+ was evaluated as 5.60 Å, where the probability of success reaches its maximum value of 78.66%, and meanwhile the probabilities were evaluated for a series of Y3+ sites in a YAG lattice. These results will be of valuable reference for achievement of the optimal energy transfer efficiency in Pr3+/Ce3+ doped YAG and other similar systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.